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18.1 Introduction

At an average cost of $985 million per drug and at least a decade to reach the market,
drug discovery and development are highly expensive, time-consuming, and complex
processes (Wouters et al., 2020; Mullard, 2020; Mohs and Greig, 2017). In fact, the
attrition rate of drug discovery and the number of clinical trial failures has increased
in the last decades (Bolognesi and Cavalli, 2016; Chaudhari, et al., 2017). As pointed
out by Hopkins, the fundamental problem may be the core philosophy in drug discov-
ery, which traditionally assumes that the primary goal as designing exquisitely selec-
tive “magic bullets” to bind with a single disease target (Hopkins, 2008). With the
development of systems biology, scientists realized the one-bullet-one-target assump-
tion is oversimplified and accepted the concept of network pharmacology as a para-
digm shift in drug discovery (Hopkins, 2008; Loscalzo and Barabasi, 2011; Yildirim
et al., 2007; Liang and Hu, 2016; Yan et al., 2018). Compared to the traditional one-
bullet-one-target paradigm, network pharmacology attempts to uncover drug action
by considering the interaction between drug molecules and their potential targets
through a holistic network, which has great potential to facilitate disease mechanism
understanding and drug discovery (Wang et al., 2021).

Identification and discovery of potential therapeutic targets for drugs have largely
benefited from high-throughput experimental techniques, which generate numerous
biological data (Russell et al., 2013). On the other hand, clarification and characteriza-
tion of active ingredients from herbal plants also deposited a huge amount of chemical
data (French et al., 2018). With the continuous collection and deposition of big
data from high-throughput experiments, modern drug discovery and development are
moving into the big data era (Zhu, 2020). It is now realized that big data in drug dis-
covery is proposing four challenges to traditional data management and analysis meth-
odologies, including the scale of data, the growth speed of data, the diversity of data
source, and the uncertainty of data (Ciallella and Zhu, 2019; Lee and Yoon, 2017).
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For example, several million compounds were typically investigated in high-
throughput experiments in drug development (Santos et al., 2017). More importantly,
data uncertainty, especially when considering complex biological mechanisms (e.g.,
drug responses, side effects), has brought further obstacles to using this data.
Therefore, the development of new data analysis tools and computational algorithms
to manage and utilize these data is necessary for drug discovery and development.

Modeling the action of drugs through the big data has given birth to the complex
network view of drug—target interaction (Hopkins, 2008), which is composed of
nodes and lines representing molecular entities (for both drug and target molecules)
and their relations, respectively. Network science, which originates from the great
mathematician Euler in the K&nigsberg problem, is growing as a systematic tool for
the analysis of complex networks emerging from a wide range of disciplines
(Borgatti and Halgin, 2011; Newman, 2003; Parkhe et al., 2006). As shown by
Yildirim et al., the application of network science to drug screening data has dem-
onstrated a network map rather than isolated, bipartite nodes for drugs and targets,
which revolutionized our understanding of drug—target interactions (Fig. 18.1)
(Yildirim et al., 2007). Currently, computational identification and analysis of
drug—target interaction are becoming a cutting-edge research areas in drug discov-
ery and development.
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Figure 18.1 Drug—target interaction network constructed from FDA-approved drugs
(Yildirim et al., 2007). In the network, drugs and targets are represented as circular and
rectangular nodes, respectively. The area of node is proportional to the number of
interactions, which are shown as lines. Different colors are used to classify drugs and targets,
according to Anatomical Therapeutic Chemical Classification and the Gene Ontology
database, respectively.

Source: With permission from Yildirim, M.A., Goh, K.I., Cusick, M.E., Barabasi, A.L.,
Vidal, M., 2007. Drug-target network. Nat. Biotechnol. 25, 1119—1126.
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In this chapter, we reviewed the important data sources in drug discovery and
development, including drug screening, active ingredient profiling, and target fish-
ing. These databases are building blocks for the construction and prediction of
drug—target interactions. Then, we introduced the algorithms and methodologies in
the construction, prediction, and analysis of drug—target interaction. The prediction
methods can be roughly divided into structure-based, similarity-based, and machine
learning-based. Although structure-based methods showed high accuracy, the appli-
cation of these methods is often limited by the lack of three-dimensional structures.
Therefore, we only focused on the other two methods. In the second part, we also
reviewed important computational tools and methods in network construction and
analysis. We hope the content of this chapter will highlight the critical role of the
network view of drug—target interaction, which is driven by the continuously
expanding databases.

18.2 Databases

The construction of drug—target interaction networks relies on databases, which are
generally composed of a hierarchical collection of alphabetical, numerical, graphical,
and structural data. This section will introduce the most commonly used databases
covering small molecules (Table 18.1), biological macromolecules (Table 18.2), and
traditional Chinese medicine (TCM) (Table 18.3), as well as their interactions.

18.2.1 Chemical databases
18.2.1.1 DrugBank

Released in 2006, DrugBank (https://go.drugbank.com/) is one of the most used
drug-related resources for bioinformatics, chemoinformatics, and medicinal
chemistry (Wishart et al., 2017). It is a freely available internet-based database
that aims to comprehensively include detailed information on targets, mechan-
isms, and interactions of both FDA-approved and investigational drugs. The
current version contains a total number of 14,460 drug entries, including 2683
FDA-approved small molecule drugs, 2585 biotech drugs such as proteins and
peptides, 6643 phase I/II/III drugs, and 131 nutraceuticals (Table 18.1, Fig. 18.2,
data collected at the end of April 2021) (Wishart et al., 2017). Besides, 5236 non-
redundant protein sequences and annotations related to the drugs were included.
Each drug entry is composed of over 200 distinct data fields covering chemical
identification, pharmacology, pharmaceutics, clinical trial, target sequence, path-
way, and spectra information (Wishart et al., 2017). Data in DrugBank can
be accessed and retrieved from a field search engine. Additionally, the database
provides alternative format and datasets for data mining and analysis. For exam-
ple, DrugBank contains a portal for machine-learning algorithms, which require
labeled datasets including drug, target, side-effect, and toxicity (Wishart et al.,
2017).


https://go.drugbank.com/

Table 18.1 Chemical databases for drugs and small molecules.

Database Description Database statistics Website Reference
DrugBank FDA-approved and 2683 FDA-approved small molecule drugs, 2585 biotech https://go.drugbank. | Wishart et al.
investigational drug drugs, 6643 investigational drugs, 131 nutraceuticals, com/ (2017)
5236 nonredundant protein sequences, and annotations
PubChem Resources for chemical 270,998,024 chemical entities (109,891,884 unique chemical https://pubchem. Kim et al.
compounds structures) and 1,366,263 bioassays ncbi.nlm.nih.gov/ (2018)
ChEMBL Structure, bioassays, More than 2 million compounds,17 million activity data, https://www.ebi.ac. Mendez et al.
affinity data for drug >1600 distinct cell lines, 500 tissues/organs, 3600 uk/chembl/ (2018)
organisms, >14,300 targets
ChemSpider | Pure chemical 103 million chemical structures and links to original data http://www. Pence and
structure and sources chemspider.com/ Williams
property (2010)



https://go.drugbank.com/
https://go.drugbank.com/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
http://www.chemspider.com/
http://www.chemspider.com/

Table 18.2 Biological databases for targets.

Database Description Database statistics Website Reference
UniProt Comprehensive database 564,638 reviewed protein sequences for over https://www.uniprot.org/ Consortium
for protein sequence 84 thousand species (2018)
and annotations
PDB Structural data for 177,009 structural entities for biological https://www.rcsb.org/ Burley et al.
biomacromolecules macromolecules (2018)
STRING Interaction database 24,584,628 proteins, 3,123,056,667 total https://string-db.org/ Szklarczyk
interactions from 5090 organisms et al. (2018)
BindingDB | Affinity database 2.2 million protein—ligand affinity data, https://www.bindingdb.org/ Gilson et al.
involving 977,487 small molecules and (2015)
8516 targets



https://www.uniprot.org/
https://www.rcsb.org/
https://string-db.org/
https://www.bindingdb.org/

Table 18.3 Databases for traditional Chinese medicine.

Database Description Database statistics Website Reference
TCM Currently the most comprehensive and 37,170 (32,364 nonduplicate) http://tcm.cmu.edu.tw/ Chen
database @Taiwan largest noncommercial TCM database TCM compounds from 352 (2011)
available for download TCM ingredients.

TCMSP Highlight the role that the systems All the 499 herbs registered in https://www.tcmspw.com/ Ru et al.
pharmacology plays across the TCM Chinese pharmacopoeia tcmsp.php (2014)
discipline. (2010), with a total of

12144 chemicals.

TCMID Information on all respects of TCM 8159 herbs, 46,914 TCM http://119.3.41.228:8000/tcmid/ Huang
including formulae, herbs, and herbal formulae, and more than et al.
ingredients, and information for drugs 25,210 herb ingredients. (2017)

and diseases
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Figure 18.2 Statistics for data size of each database in three different categories, that is,
small molecules, biological targets, and traditional Chinese medicine.

18.2.1.2 PubChem

Initiated and maintained by the US National Institutes of Health (NIH), PubChem
(https://pubchem.ncbi.nlm.nih.gov/) is an open database that collects chemical
information and resources (Kim et al., 2018). PubChem supports bidirectional data
transfer between users and the database, allowing contributors to create, upload,
and edit data freely. Since its first version in 2004, PubChem has continually
become a huge chemical database that contains 270,998,024 chemical entities
(109,891,884 unique chemical structures) and 1,366,263 bioassays (carbohydrates,
nucleotides, peptides, etc.) contributed by PubChem users (Table 18.1, Fig. 18.2)
(Kim et al., 2018). It provides spectral information including 'H NMR, '*C NMR,
2D NMR, FT-IR, Ms, UV-Vis, and Raman data for more than 590,000 compounds.
Spectral data in PubChem are linked with external spectral databases such as
SpectraBase (http://spectrabase.com) and the MassBank of North America (https://
mona.fiehnlab.ucdavis.edu/). By the end of April 2021, the database archived
296,907,771 biological activity data, 90,426 gene data, 96,561 protein data, 4849
taxonomy, and 237,925 pathways involved with chemical entities (Kim et al.,
2018). Data in PubChem is organized as three dependent databases, including sub-
stance which collects descriptions of substances contributed by users, Compound
which enumerates chemical compounds according to unique chemical structure, and
Bioassay containing biological assays and experiments related to the compounds.

18.2.1.3 ChEMBL

ChEMBL (https://www.ebi.ac.uk/chembl/) is a manually maintained drug discovery
database that deposits medicinal chemistry data from clinical development
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candidates and academic journals including Bioorganic & Medicinal Chemistry
Letter, Journal of Medicinal Chemistry, Bioorganic & Medicinal Chemistry,
Journal of Natural Products, European Journal of Medicinal Chemistry,
MedChemComm, ACS Medicinal Chemistry Letters, etc. (Mendez et al., 2018).
Structures of compounds, assays, and activity information were manually extracted
from the literature by ChEMBL curators. Since information such as structure con-
nectivity, stereochemistry, and quantitative values are prone to error, it iS encour-
aged to contribute to ChEMBL data by depositing chemical and biological
information during scientific publication (Mendez et al., 2018). The current released
version ChEMBL 28 (at the end of April 2021) contains over 2 million compounds
from over 80,000 publications and patents. It includes over 17 million activity data
annotating from over 1600 distinct cell lines, 500 tissues/organs, and 3600 organ-
isms (Table 18.1, Fig. 18.2) (Mendez et al., 2018). The number of targets in
ChEMBL has exceeded 14,300, with 6311 human proteins (Mendez et al., 2018).
Except for human, mouse, and rat targets, the database also contains plenty of
experimental data from other model organisms such as Staphylococcus aureus.
ChEBML is embracing new data sources from bacteria, viruses, and pathogens,
making it an ideal platform for multipurpose drug development (e.g., antimicrobial).
Clinical data in ChEMBL is continuing to be incorporated with other public data-
bases such as the ClinicalTrials.gov database (https://clinicaltrials.gov/), FDA Orange
Book (https://www.accessdata.fda.gov/scripts/cder/ob/), FDA New Drug Approvals
(https://www.fda.gov/Drugs/DevelopmentApprovalProcess/Druglnnovation/default.htm),
the British National Formulary (https://bnf.nice.org.uk/), Medicinal Subject Headings
(MeSH, https://www.nlm.nih.gov/mesh/). Bioactivity data are also timely exchanged
with external databases like PubChem (https://pubchem.ncbi.nlm.nih.gov/) and
BindingDB (http://www.bindingdb.org/). Other properties of deposited compounds
were calculated by RDKit (https://www.rdkit.org/). For data accessibility, ChEMBL
supports text search through its webpage and download from FTP site (ftp://ftp.ebi.
ac.uk/pub/databases/chembl/ChEMBLdb/latest/) with a variety of data formats includ-
ing SD file and FASTA file (Mendez et al., 2018).

18.2.1.4 ChemSpider

From the perspective of pure chemical structure and property, researchers hope to
obtain a variety of information about a compound, including molecular structure,
systematic nomenclature, physical properties, spectral data, reactions and synthetic
methods, and safety information. The information is typically distributed in differ-
ent literatures, libraries, and databases. ChemSpider (http://www.chemspider.com/)
was born to collectively integrate chemical structure-related information from
different data sources (Table 18.1, Fig. 18.2) (Pence and Williams, 2010). In 2009,
ChemSpider was purchased by the Royal Society of Chemistry (RSC), allowing the
accessibility of a wealth of information from RSC, that is, scientific publications
and databases. ChemSpider has also been connected with other databases such
as Wikipedia (https://en.jinzhao.wiki/wiki/Main_Page), PubChem, and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (https://www.kegg.jp/). To avoid


https://clinicaltrials.gov/
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errors in the data input process, ChemSpider is curated by only registered users.
The data in ChemSpider can be accessed from text search, structure searches as
well as substructure search. With over 103 million chemical structures and links to
original data sources, ChemSpider is becoming a portal to the property, annotation,
synthesis, spectral information of the expanding chemical universe (Table 18.1)
(Pence and Williams, 2010).

18.2.2 Databases for targets
18.2.2.1 UniProt

The Universal Protein Resource (UniProt, https://www.uniprot.org/) is aimed to pro-
vide a comprehensive and high-quality data source of protein sequences and annota-
tions (Table 18.2) (Consortium, 2018). The behavior and physiology of cells are
defined by proteins that respond to environmental signals. Understanding the time-
dependent protein expression at a whole proteome level is crucial to interpret life in a
quantitative way. With the improvements of experimental techniques, the information
on protein sequence, structure and function is increasing broadly and deeply. It is
therefore challenging to manage the information and make it conveniently accessible
to users. UniProt data are managed by more than 100 experts hosted by the collabora-
tion of the European Bioinformatics Institute (EMBL-EBI), the Swiss Institute of
Bioinformatics (SIB), and the Protein Information Resource (PIR). UniProt (release
2020_05) now provides 564,638 reviewed entries for over 84 thousand species
including humans, rice, Arabidopsis thaliana, mouse, zebrafish, etc. UniProt entry is
composed of the core data field (protein sequence, protein name, description, taxon-
omy, citation) and peripheral field including as much annotation information
(Consortium, 2018). Although the database can provide rich information by simple
text query and search, it actively supports in-depth data mining through various
online training such as webinars (https://www.ebi.ac.uk/training/online/), YouTube
videos (https://www.youtube.com/user/uniprotvideos/), Facebook (https://www.face-
book.com/uniprot.org/), and Twitter (@uniprot).

18.2.2.2 Protein Data Bank

Structural biology has witnessed frequent advances in the structural determination
of proteins, RNA, DNA, and their complexes with small molecules. Since 1971, the
Protein Data Bank (PDB, https://www.rcsb.org/) established an open-access data-
base in structural biology by depositing only seven protein structures at the begin-
ning (Table 18.2) (Burley et al., 2018). With continuing development, PDB has
grown up to a comprehensive database consisting of 177,009 structural entities for
biological macromolecules (Fig. 18.2) (Burley et al., 2018). PDB data entry is origi-
nated from experimental sources including X-ray diffraction, nuclear magnetic
spectroscopy (NMR), and three-dimensional electron microscopy (Table 18.2).
Structural data are validated and biocurated by a global expert team to ensure the
accurate representation of the structural data and the underlying annotation
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information. Data exploration service in PDB allows convenient accessibility to
every structural entry via any popular web browser (e.g., Chrome, Firefox,
Microsoft Edge). The website rcsb.org supports the keywords and unstructured text
search, whilst the obtained data are sorted and tabulated to include atomic coordi-
nates, experimental methods, sequence, description, citation, specific chemical com-
ponents, taxonomy, and enzyme classification. Additionally, PDB data can be
explored by multiple online tools for data manipulation and visualization. For
example, the PDB website enables metabolic pathway mapping for user-interested
structures, drug, and ligand discovery through external links such as DrugBank and
BindingDB, as well as the fast and interactive three-dimensional display through
NGL Viewer (Burley et al., 2018).

18.2.2.3 String

With impressive advances in elucidating the interaction between individual pro-
teins, it is realized cellular machinery depends on the global network of physical
(direct) and functional (indirect) protein—protein interactions. The information
space of protein—protein interactions is far more complicated than the intrinsic
properties and annotations of individual proteins. STRING (https://string-db.org/) is
a knowledgebase of known and computationally predicted protein—protein interac-
tions (Szklarczyk et al., 2018). It collects and stores protein—protein interaction
data from a variety of publicly available data sources: genomic predictions, high-
throughput experiments, co-expression, automated text-mining, and online data-
bases such as Database of Interacting Proteins (DIP, http://dip.doe-mbi.ucla.edu/),
Biomolecular Interaction Network Database (BIND, http://bind.ca/), Molecular
Interaction Database (MINT, http://mint.bio.uniroma2.it/mint/), KEGG (http://
www.kegg.jp/), and Reactome (http://www.reactome.org/). STRING v11.0 contains
24,584,628 proteins and 3,123,056,667 total interactions from 5090 organisms
including Homo sapiens, Mus musculus, A. thaliana, and so on (Table 18.2,
Fig. 18.2) (Szklarczyk et al., 2018). STRING defines a functional association unit
as the basic building blocks, which is an edge between two proteins both having
functional contributions to a specific biological process. By the definition, pro-
tein—protein interaction does not necessarily require physical contact between pro-
teins. STRING website provides user-friendly access to the interaction network for
single protein and multiple proteins, which can be enquired either by name or
sequence. Also, through the STRING online server, users can compute functional
enrichment for a set of proteins involving the interaction network (Szklarczyk
et al., 2018).

18.2.2.4 BindingDB

BindingDB (https://www.bindingdb.org/) is an open database of experimental affin-
ity data of protein—ligand interaction (Gilson et al., 2015). With steady growth
since 2000, BindingDB now contains about 2.2 million protein—ligand affinity
data, involving 977,487 small molecules and 8516 protein targets (Table 18.2,
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Fig. 18.2) (Gilson et al., 2015). The data source for BindingDB includes scientific
publications and patents. Affinity data of at least one protein—ligand complex is
supplied in the database along with information on publication source and experi-
mental conditions (e.g., temperature, pH, buffer composition). BindingDB supports
interactive connection to several public databases including PDB, UniProt,
DrugBank, ChEMBL, PubChem, Reactome, MarinLit (http://pubs.rsc.org/marinlit),
and ZINC (http://zinc.docking.org/). Data in BindingDB is organized as hyperlinks
listed in a table format and can be accessed through flexible web tools for query,
browsing, download, visualization, and analysis (Gilson et al., 2015).

18.2.3 Databases for traditional Chinese medicine

TCM often comprises over thousands of chemical compounds from different botan-
ical species, hitting multiple biological targets (Cheung, 2011). The herbal com-
pounds and corresponding targets form a complex network that involves various
nodes and edges (Li et al., 2011; Tao et al., 2013). To comprehensively characterize
and analyze the network, the wet experiment is time-consuming and expensive due
to the dozens of chemical entities and biological targets involved. Systems pharma-
cology is a big data-driven strategy that deals with prior experimental data of herbal
compounds as well as biological assays (Li et al., 2011; Ru et al., 2014). With
increasing attention towards discovering novel lead compounds from TCM, a data-
base for TCM is necessary. Besides, the prediction power of systems pharmacology
is enhanced by online target prediction algorithms. This section briefly reviews
some typical TCM databases (Table 18.3).

18.2.3.1 Traditional Chinese medicine Database@Taiwan

TCM Database @Taiwan includes more than 20000 chemical compounds from 453
herbs, animals, and minerals in TCM (Chen, 2011). The database is evolving to
cover more compound data from folk herbs. In TCM Database@Taiwan, drug
molecules were classified into 22 different categories according to clinical applica-
tions (Chen, 2011). The classification model is based on the theories of TCM
involving the Yin-yang and the Five Elements theory. TCM ingredients were col-
lected from publications on Medline and ISI Web of Knowledge. Through simple
and advanced search, TCM Database @Taiwan provides both two-dimensional and
three-dimensional structures of each TCM constituent, as well as physical properties
such as ALogP, polar surface area, rotatable bonds, and so on (Table 18.3,
Fig. 18.2) (Chen, 2011).

18.2.3.2 Traditional Chinese medicine systems pharmacology

The TCM systems pharmacology (TCMSP) database and analysis platform is built
for this purpose (Ru et al., 2014). TCMSP contains 499 Chinese herbs collected in
Chinese Pharmacopeia (Ru et al., 2014). Through deep data mining and analysis,
29,384 chemical compounds, 3311 targets, and 837 associated diseases were
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manually curated in the database (Table 18.3, Fig. 18.2) (Ru et al., 2014).
ADME-related properties were computed in TCMSP, including oral bioavailability,
half-life, drug-likeness, Caco-2 permeability, blood—brain barrier, and Lipinski’s
rule of five (Ru et al., 2014). For drug targets, TCMSP includes all experimentally
validated targets and SysDT model predicted targets. The strengths of the TCMSP
platform allow the analytical decomposition of TCM through data and network
methodology (Ru et al., 2014).

18.2.3.3 Traditional Chinese medicine integrated database

TCM integrated database (TCMID) is aiming to provide convenient online informa-
tion on TCM for pharmacologists and scholars (Huang et al., 2017). Established in
2013, TCMID integrated online databases including TCM Database @ Taiwan (Chen,
2011), HIT (Ye et al., 2010) to collect over 49,000 prescriptions, 8159 herbs, 25,210
ingredients, 3791 diseases, 6828 drugs and 17,521 targets (Table 18.3, Fig. 18.2).
Since most publications on TCM, especially separation and pharmacological research,
were written in Chinese, TCMID manually collects original data from the Chinese
national knowledge infrastructure (CNKI) and translated the related information into
English. Users can easily retrieve detailed descriptions and information from external
databases such as Drugbank, OMIM, and STITCH. Additionally, TCMID has docu-
mented mass spectra (Ms) of Chinese herbs through CNKI. TCMID collects the origi-
nal place of the herb, Ms spectrum, chromatography spectrum, as well as compound
information (Huang et al., 2017). With new features added, TCMID is growing as an
important hub for the modernization of TCM.

18.3 Prediction, construction, and analysis of
drug—target network

The drug—target network is mathematically described as a bipartite network graph
G(D, T, P). In the network, the drug set D and target set T is defined as

DZD(dl, dz,---:dn)
T:T(l‘l, 12,--~ytm)

And the interaction set P is defined as a Kronecker matrix:

Pt P12 ... P
P:

Pmi Pm2 ceo Dnm

where p;; = 1 when drug d binds with target 7;, otherwise p;; = 0. Practically, a binding
affinity threshold is used to obtain the interaction py. The purpose of the prediction,
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construction, and analysis of the drug—target network is to identify drug targets from
the whole target pool, formulate the interactome configuration, and characterize the
property and module both globally and locally. A landscape on the drug—target inter-
action network is crucial to the understanding of therapeutic mechanisms and side
effects. In this section, we briefly review advances in algorithms, computational tools,
and network analysis methods in drug—target interaction.

18.3.1 Algorithms to predict drug—target interaction network

Prediction of biological networks containing thousands of compounds and targets is
still challenging to the traditional experimental approach, such as high-throughput
screening and biological assays (Haggarty et al., 2003; Kuruvilla et al., 2002; Wang
et al., 2015; Whitebread et al., 2005). Therefore, the computational prediction
method is important for biological network analysis. Although the virtual screening
method for three-dimensional compounds and targets is well developed, the lack of
three-dimensional structural data and time-consuming algorithms for most biologi-
cal molecules still makes this approach limited in real application (Cheng et al.,
2007; Morris et al., 2009). Alternatively, several knowledge-based computational
methods have been developed to efficiently address the drug—target prediction
problem (Table 18.4). In this section, we will briefly review the typical algorithms
and methods for drug—target prediction.

Table 18.4 Algorithms to predict drug—target interaction.

Algorithms Classification Description Reference
Bipartite graph Supervised A supervised machine learning Yamanishi
algorithm machine algorithm for a BG model, et al. (2008)
learning mapping drugs in chemical
space and targets in genomic
space
Advanced BG Supervised Advanced version of BG Yamanishi
algorithm machine algorithm with pharmacological et al. (2010)
learning data involved
BLM Supervised A BLM incorporating the Bleakley and
machine concepts of local models to Yamanishi
learning predict drug—target interaction (2009)
BLM-NII Supervised An updated version of BLM by Mei et al.
machine introducing neighbor-based (2013)
learning interaction-profile inferring
RBM Supervised A RBM with a two-layer graphic Wang and
machine model effectively capture the Zeng
learning features of drug—target (2013)
interaction and predict different
types of drug—target interaction

(Continued)
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Table 18.4 (Continued)

Algorithms Classification Description Reference
Random forest Supervised Combines the information from Cao et al.
algorithm machine chemical, biological, and (2014)
learning network features to predict
drug—target interaction with
high accuracy
Negative Supervised Two methods to assist the Wang et al.
dataset machine selection of negative dataset in (2014)
selection learning the machine learning-based
method algorithms
NetLapRLS Semisupervised Adopts both labeled and unlabeled | Xia et al.
machine data in machine learning (2010)
learning
Chemical Chemical Chemical similarity method based Keiser et al.
similarity similarity on the assumption that similar (2009)
drug structures are more likely
to interact with similar targets
Two-step Chemical A similarity score was obtained by | Chen and
similarity similarity graph representation and Zeng
chemical functional group (2013)
representation in two steps
Phenotypic Network An algorithm to determine if two Campillos
side-effect similarity drugs will interact with the et al. (2008)
similarity same target
NRWRH Network Based on the framework of Xia et al.
similarity random walk and the (2010)
assumption that similar drugs
often corresponding to similar
targets
DBSI Network Drug-based similarity inference Cheng et al.
similarity based on complex network (2012)
theory
TBSI Network Target-based similarity inference Cheng et al.
similarity based on complex network (2012)
theory
NBI Network Network-based inference based on Cheng et al.
similarity complex network theory (2012)
Within scores Network Considering features from target Shi et al.
and between similarity similarity and drug similarity (2015)
scores
MTOI Network Multiple target optimal Yang et al.
similarity intervention finding algorithm (2008)

to identify potential drug targets
and their optimal combinations
restoring to a normal state
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18.3.1.1 Machine learning-based methods

Yamanishi et al. have developed a bipartite graph (BG) algorithm to probe
drug—target interaction for four target classes including enzymes, ion channels,
GPCRs, and nuclear receptors (Table 18.4) (Yamanishi et al., 2008). By introducing
in-prior knowledge of chemical structures and genomic sequence information, they
have built a supervised machine learning algorithm for a BG model, mapping drugs
in chemical space and targets in genomic space (Fig. 18.3). The machine learning
models f; and f, were defined based on a modified kernel regression function:
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Figure 18.3 An illustration of bipartite graph algorithm.
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where w represents a weighing vector, and s stands for similarity score for chemical
structures or sequence (Yamanishi et al., 2008). In this BG pharmacological space
algorithm, the structural and sequence similarity were considered, and the drug—
target interactions were predicted by the closeness between drugs and targets.

Regarding the side effect of a drug, it is assumed that drugs with similar side
effects are more likely to interact with similar targets. Taking pharmacological data
into consideration may further improve the performance of a machine learning-based
algorithm. Yamanishi et al. have further improved the BG method by involving phar-
macological knowledge (Yamanishi et al., 2010). The pharmacological effect similar-
ity, computed from the chemical structures of drugs, was introduced into the BG
model to identify drug—target interactions (Table 18.4) (Yamanishi et al., 2010).

Based on the BG method, Bleakley et al. proposed a bipartite local model
(BLM) incorporating the concepts of local models to predict drug—target interac-
tion (Table 18.4) (Bleakley and Yamanishi, 2009). By involving local models,
the edge-prediction problem was transformed into the binary classification of
labeled points (Bleakley and Yamanishi, 2009). Targets are predicted by comparing
sequence similarities, and drug—target interactions are predicted based on structural
similarities. Finally, independent drug—target interactions were obtained putatively.
Since it combines the strengths of the BG model and the local model, the BLM
algorithm showed an excellent computational performance to predict drug—target
interaction (Bleakley and Yamanishi, 2009).

Despite the computational speed, BLM is not able to predict drug—target interac-
tion without training data. Therefore, the prediction of drug—target interaction for
new drug molecules is not possible by using BLM. Mei et al. have proposed an
updated version of BLM by introducing neighbor-based interaction-profile inferring
(BLM-NII, Table 18.4) (Mei et al., 2013). The BLM-NII method derived the initial
weighted interactions for the new drug from its neighbor interaction profile and
then labeled this interaction to train the BLM model (Mei et al., 2013). For nuclear
receptors, BLM-NII enhances the BLM method, especially for the dataset that con-
tains drug—target with no prior interaction information.

Zeng et al. have developed a restricted Boltzmann machine (RBM) method that
can predict drug—target interactions and the types of interaction (Table 18.4)
(Wang and Zeng, 2013). In the RBM method, a contrastive divergence algorithm
was applied to a two-layer graphic model which represents drug—target interaction.
Zeng et al. has tested the RBM method on MATADOR and STITCH database
(Giinther et al., 2008; Szklarczyk et al., 2015; Wang and Zeng, 2013). It has shown
the RBM method can effectively capture the features of drug—target interaction
and predict different types of drug—target interaction.

Cao et al. proposed a random forest algorithm to predict drug—target interaction
(Table 18.4) (Cao et al., 2014). The novelty of the algorithm was the combination
with the information from chemical, biological, and network features. The accuracy
of the algorithm was evaluated as 93.52%, 94.84%, 89.68%, and 84.72% for
enzymes, ion channels, GPCRs, and nuclear receptors, respectively (Cao et al.,
2014). The performance of the algorithm showed the importance of network topol-
ogy as training information for the prediction of drug—target interaction.
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In the prediction of drug—target interaction, a common problem for the machine
learning-based method is the lack of a negative dataset. Wang et al. have proposed
two methods to assist the selection of negative datasets in the machine learning-
based algorithms (Table 18.4) (Wang et al., 2014). In the first method, a drug—pro-
tein deviation function is defined as:

_ ()@ — (%))
X;) =
. zj: var(x) 3 ((x;)” /var(x;))

vector X; (i =1,2,..., m) is an m-dimension vector representing m properties of the
ith target, x stands for the jth value for the property of the ith targets. Wang et al.
used & >0.42 as a threshold value to select a negative dataset (Wang et al., 2014).
In the second method, a probability function for the ith unknown target to be a neg-
ative sample was defined as

(EX) = (&positive))
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P =0.5 was used to consider the negative dataset. Wang et al. have improved
the prediction accuracy and identified 1797 and 227 drug—target interactions by
using these two methods, respectively (Wang et al., 2014).

As discussed above, labeling the positive or negative dataset is often a challeng-
ing problem in the development of algorithms based on supervised machine learn-
ing methods. The problem can be addressed by introducing a semisupervised
method, which adopts both labeled and unlabeled data in machine learning. Wong
et al. developed a manifold regularization semisupervised machine learning method
(Table 18.4) (NetLapRLS) to predict drug—target interaction, which generates a
biological space by combining information of chemical space, sequence space, and
drug—target interaction network (Xia et al., 2010). In the drug domain, classifica-
tion functions are defined as:

F) = minJ(F,) = Y—F;} + ﬁdTrace(FngFd)
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where F, is the prediction function on drug domain, oy is a cost function, and
is Frobenius norm, (3, is the trade-off in the drug domain, Trace is the matrix trace,
Y is the adjacent matrix of the known drug—target interaction network (Xia et al.,
2010). The similar function F, was defined in the target domain. Applying repre-
senter theorem and optimization, the prediction function in drug and protein domain
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were derived as:
Fi =W (Wy+B8,LsWa) 'Y
F; = W/(W,+5LW)"'Y

The predictions are then obtained by combining drug and target domain as (Xia
et al., 2010)
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18.3.1.2 Similarity-based methods

Side effects and efficacy of a drug could be explained by the multiple physiological
targets of a drug. It is reasonable to assume that similar drug structures are more
likely to interact with similar targets. But one should keep in mind that molecular
similarity should be well defined first, since the concept of similarity is subjective
and the similarity space is complex (Basak et al., 2002; Basak et al., 2006). By using
two-dimensional chemical similarity method, Keiser et al. predicted thousands
of drug—target interactions (Table 18.4) (Keiser et al., 2009). Among them, 23 asso-
ciations were experimentally confirmed, including the inhibition of the 5-
hydroxytryptamine transporter by the ion channel drug Vadilex, and antagonism of
the histamine H4 receptor by the enzyme inhibitor Rescriptor (Keiser et al., 2009).

Chen et al. have developed a two-step similarity-based method to predict the target
group of drugs (Table 18.4) (Chen and Zeng, 2013). In this method, drugs were
encoded as their graph representations. Then the target group 7(d) for drug d was
defined as a vector containing five elements, which are Boolean values representing
whether a drug target belongs to the five target groups, that is, G-protein-coupled
receptors (GPCRs), cytokine receptors, nuclear receptors, ion channels and enzymes
(Chen and Zeng, 2013). A similarity score was obtained by graph representation and
chemical functional group representation in two steps, respectively. The method pro-
vided more than one target group for each drug, and the prediction accuracy was
79.01% and 76.43% for the training and test set, respectively (Chen and Zeng, 2013).

Using phenotypic side-effect similarity, which describes the similarity of in vitro
target binding profiles of drugs, Kuhn et al. proposed an algorithm to determine if
two drugs will interact with the same target (Table 18.4) (Campillos et al., 2008).
Two-dimensional Tanimoto similarity coefficient of a chemical structure and a lin-
ear function Pgg describing the probability of sharing the same considering the
side-effect similarity were used in the algorithm. Combining these functions, Kuhn
et al. defined a sigmoid function P,p to characterize the probability of sharing the
same target from chemical structures (Campillos et al., 2008):

B\ —1
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where A and B are function parameters. Kuhn et al. used the method to analyze 746
approved drugs, and build a side-effect network with 1018 drug—drug relations,
which contains 261 with no chemical similarity (Campillos et al., 2008).

Based on the framework of random walk and the assumption that similar drugs
often correspond to similar targets, Yan et al. have developed a network-based ran-
dom walk with restart on the heterogeneous network (NRWRH) algorithm to pre-
dict drug—target interaction (Table 18.4) (Xia et al., 2010). Different from machine
learning approaches, the NRWRH algorithm utilized network analysis techniques
by introducing random walk on the heterogeneous network. With information on
known drug—target interactions, Yan et al. have integrated three different networks
into a heterogeneous network, including target—target similarity network, drug—
drug similarity network, and drug—target interaction network (Xia et al., 2010). To
implement a random walk, a transition matrix M was calculated as:

_ | M Mpp
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where My and Mpp, are the probability for target-to-target and drug-to-drug transi-
tion in the random walk, respectively; Myp and Mp; are the transition probability
for target-to-drug and drug-to-target, respectively (Xia et al., 2010). Then the ran-
dom walk was implemented by the following iteration equation:

prr1=01- V)MTPt +rpo

where the probability p is iteratively calculated with the restart probability » and
transition matrix M. Yan et al. has shown that NRWRH has improved prediction
performance in four classes of drug—target interactions, that is, enzymes, ion chan-
nels, GPCRs, and nuclear receptors (Xia et al., 2010).

Based on complex network theory, Tang et al. proposed three supervised infer-
ence methods to predict drug—target interaction (Table 18.4), namely drug-based
similarity inference (DBSI), target-based similarity inference (TBSI), and network-
based inference (NBI) (Cheng et al., 2012). For the three inference methods, differ-
ent similarity score functions were defined based on chemical structure similarity,
sequence similarity, or network similarity. For example, the final score f{(i) of drug
d; in the NBI method is obtained from:
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where k(d,) represents the number of targets interacting with drug d,, and k(%))