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18.1 Introduction

At an average cost of $985 million per drug and at least a decade to reach the market,

drug discovery and development are highly expensive, time-consuming, and complex

processes (Wouters et al., 2020; Mullard, 2020; Mohs and Greig, 2017). In fact, the

attrition rate of drug discovery and the number of clinical trial failures has increased

in the last decades (Bolognesi and Cavalli, 2016; Chaudhari, et al., 2017). As pointed

out by Hopkins, the fundamental problem may be the core philosophy in drug discov-

ery, which traditionally assumes that the primary goal as designing exquisitely selec-

tive “magic bullets” to bind with a single disease target (Hopkins, 2008). With the

development of systems biology, scientists realized the one-bullet-one-target assump-

tion is oversimplified and accepted the concept of network pharmacology as a para-

digm shift in drug discovery (Hopkins, 2008; Loscalzo and Barabasi, 2011; Yildirim

et al., 2007; Liang and Hu, 2016; Yan et al., 2018). Compared to the traditional one-

bullet-one-target paradigm, network pharmacology attempts to uncover drug action

by considering the interaction between drug molecules and their potential targets

through a holistic network, which has great potential to facilitate disease mechanism

understanding and drug discovery (Wang et al., 2021).

Identification and discovery of potential therapeutic targets for drugs have largely

benefited from high-throughput experimental techniques, which generate numerous

biological data (Russell et al., 2013). On the other hand, clarification and characteriza-

tion of active ingredients from herbal plants also deposited a huge amount of chemical

data (French et al., 2018). With the continuous collection and deposition of big

data from high-throughput experiments, modern drug discovery and development are

moving into the big data era (Zhu, 2020). It is now realized that big data in drug dis-

covery is proposing four challenges to traditional data management and analysis meth-

odologies, including the scale of data, the growth speed of data, the diversity of data

source, and the uncertainty of data (Ciallella and Zhu, 2019; Lee and Yoon, 2017).
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For example, several million compounds were typically investigated in high-

throughput experiments in drug development (Santos et al., 2017). More importantly,

data uncertainty, especially when considering complex biological mechanisms (e.g.,

drug responses, side effects), has brought further obstacles to using this data.

Therefore, the development of new data analysis tools and computational algorithms

to manage and utilize these data is necessary for drug discovery and development.

Modeling the action of drugs through the big data has given birth to the complex

network view of drug�target interaction (Hopkins, 2008), which is composed of

nodes and lines representing molecular entities (for both drug and target molecules)

and their relations, respectively. Network science, which originates from the great

mathematician Euler in the Königsberg problem, is growing as a systematic tool for

the analysis of complex networks emerging from a wide range of disciplines

(Borgatti and Halgin, 2011; Newman, 2003; Parkhe et al., 2006). As shown by

Yildirim et al., the application of network science to drug screening data has dem-

onstrated a network map rather than isolated, bipartite nodes for drugs and targets,

which revolutionized our understanding of drug�target interactions (Fig. 18.1)

(Yildirim et al., 2007). Currently, computational identification and analysis of

drug�target interaction are becoming a cutting-edge research areas in drug discov-

ery and development.

Figure 18.1 Drug�target interaction network constructed from FDA-approved drugs

(Yildirim et al., 2007). In the network, drugs and targets are represented as circular and

rectangular nodes, respectively. The area of node is proportional to the number of

interactions, which are shown as lines. Different colors are used to classify drugs and targets,

according to Anatomical Therapeutic Chemical Classification and the Gene Ontology

database, respectively.

Source: With permission from Yildirim, M.A., Goh, K.I., Cusick, M.E., Barabasi, A.L.,

Vidal, M., 2007. Drug-target network. Nat. Biotechnol. 25, 1119�1126.
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In this chapter, we reviewed the important data sources in drug discovery and

development, including drug screening, active ingredient profiling, and target fish-

ing. These databases are building blocks for the construction and prediction of

drug�target interactions. Then, we introduced the algorithms and methodologies in

the construction, prediction, and analysis of drug�target interaction. The prediction

methods can be roughly divided into structure-based, similarity-based, and machine

learning-based. Although structure-based methods showed high accuracy, the appli-

cation of these methods is often limited by the lack of three-dimensional structures.

Therefore, we only focused on the other two methods. In the second part, we also

reviewed important computational tools and methods in network construction and

analysis. We hope the content of this chapter will highlight the critical role of the

network view of drug�target interaction, which is driven by the continuously

expanding databases.

18.2 Databases

The construction of drug�target interaction networks relies on databases, which are

generally composed of a hierarchical collection of alphabetical, numerical, graphical,

and structural data. This section will introduce the most commonly used databases

covering small molecules (Table 18.1), biological macromolecules (Table 18.2), and

traditional Chinese medicine (TCM) (Table 18.3), as well as their interactions.

18.2.1 Chemical databases

18.2.1.1 DrugBank

Released in 2006, DrugBank (https://go.drugbank.com/) is one of the most used

drug-related resources for bioinformatics, chemoinformatics, and medicinal

chemistry (Wishart et al., 2017). It is a freely available internet-based database

that aims to comprehensively include detailed information on targets, mechan-

isms, and interactions of both FDA-approved and investigational drugs. The

current version contains a total number of 14,460 drug entries, including 2683

FDA-approved small molecule drugs, 2585 biotech drugs such as proteins and

peptides, 6643 phase I/II/III drugs, and 131 nutraceuticals (Table 18.1, Fig. 18.2,

data collected at the end of April 2021) (Wishart et al., 2017). Besides, 5236 non-

redundant protein sequences and annotations related to the drugs were included.

Each drug entry is composed of over 200 distinct data fields covering chemical

identification, pharmacology, pharmaceutics, clinical trial, target sequence, path-

way, and spectra information (Wishart et al., 2017). Data in DrugBank can

be accessed and retrieved from a field search engine. Additionally, the database

provides alternative format and datasets for data mining and analysis. For exam-

ple, DrugBank contains a portal for machine-learning algorithms, which require

labeled datasets including drug, target, side-effect, and toxicity (Wishart et al.,

2017).
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Table 18.1 Chemical databases for drugs and small molecules.

Database Description Database statistics Website Reference

DrugBank FDA-approved and

investigational drug

2683 FDA-approved small molecule drugs, 2585 biotech

drugs, 6643 investigational drugs, 131 nutraceuticals,

5236 nonredundant protein sequences, and annotations

https://go.drugbank.

com/

Wishart et al.

(2017)

PubChem Resources for chemical

compounds

270,998,024 chemical entities (109,891,884 unique chemical

structures) and 1,366,263 bioassays

https://pubchem.

ncbi.nlm.nih.gov/

Kim et al.

(2018)

ChEMBL Structure, bioassays,

affinity data for drug

More than 2 million compounds,17 million activity data,

.1600 distinct cell lines, 500 tissues/organs, 3600

organisms, .14,300 targets

https://www.ebi.ac.

uk/chembl/

Mendez et al.

(2018)

ChemSpider Pure chemical

structure and

property

103 million chemical structures and links to original data

sources

http://www.

chemspider.com/

Pence and

Williams

(2010)

https://go.drugbank.com/
https://go.drugbank.com/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
http://www.chemspider.com/
http://www.chemspider.com/


Table 18.2 Biological databases for targets.

Database Description Database statistics Website Reference

UniProt Comprehensive database

for protein sequence

and annotations

564,638 reviewed protein sequences for over

84 thousand species

https://www.uniprot.org/ Consortium

(2018)

PDB Structural data for

biomacromolecules

177,009 structural entities for biological

macromolecules

https://www.rcsb.org/ Burley et al.

(2018)

STRING Interaction database 24,584,628 proteins, 3,123,056,667 total

interactions from 5090 organisms

https://string-db.org/ Szklarczyk

et al. (2018)

BindingDB Affinity database 2.2 million protein�ligand affinity data,

involving 977,487 small molecules and

8516 targets

https://www.bindingdb.org/ Gilson et al.

(2015)

https://www.uniprot.org/
https://www.rcsb.org/
https://string-db.org/
https://www.bindingdb.org/


Table 18.3 Databases for traditional Chinese medicine.

Database Description Database statistics Website Reference

TCM

database@Taiwan

Currently the most comprehensive and

largest noncommercial TCM database

available for download

37,170 (32,364 nonduplicate)

TCM compounds from 352

TCM ingredients.

http://tcm.cmu.edu.tw/ Chen

(2011)

TCMSP Highlight the role that the systems

pharmacology plays across the TCM

discipline.

All the 499 herbs registered in

Chinese pharmacopoeia

(2010), with a total of

12144 chemicals.

https://www.tcmspw.com/

tcmsp.php

Ru et al.

(2014)

TCMID Information on all respects of TCM

including formulae, herbs, and herbal

ingredients, and information for drugs

and diseases

8159 herbs, 46,914 TCM

formulae, and more than

25,210 herb ingredients.

http://119.3.41.228:8000/tcmid/ Huang

et al.

(2017)

http://tcm.cmu.edu.tw/
https://www.tcmspw.com/tcmsp.php
https://www.tcmspw.com/tcmsp.php
http://119.3.41.228:8000/tcmid/


18.2.1.2 PubChem

Initiated and maintained by the US National Institutes of Health (NIH), PubChem

(https://pubchem.ncbi.nlm.nih.gov/) is an open database that collects chemical

information and resources (Kim et al., 2018). PubChem supports bidirectional data

transfer between users and the database, allowing contributors to create, upload,

and edit data freely. Since its first version in 2004, PubChem has continually

become a huge chemical database that contains 270,998,024 chemical entities

(109,891,884 unique chemical structures) and 1,366,263 bioassays (carbohydrates,

nucleotides, peptides, etc.) contributed by PubChem users (Table 18.1, Fig. 18.2)

(Kim et al., 2018). It provides spectral information including 1H NMR, 13C NMR,

2D NMR, FT-IR, Ms, UV-Vis, and Raman data for more than 590,000 compounds.

Spectral data in PubChem are linked with external spectral databases such as

SpectraBase (http://spectrabase.com) and the MassBank of North America (https://

mona.fiehnlab.ucdavis.edu/). By the end of April 2021, the database archived

296,907,771 biological activity data, 90,426 gene data, 96,561 protein data, 4849

taxonomy, and 237,925 pathways involved with chemical entities (Kim et al.,

2018). Data in PubChem is organized as three dependent databases, including sub-

stance which collects descriptions of substances contributed by users, Compound

which enumerates chemical compounds according to unique chemical structure, and

Bioassay containing biological assays and experiments related to the compounds.

18.2.1.3 ChEMBL

ChEMBL (https://www.ebi.ac.uk/chembl/) is a manually maintained drug discovery

database that deposits medicinal chemistry data from clinical development

Figure 18.2 Statistics for data size of each database in three different categories, that is,

small molecules, biological targets, and traditional Chinese medicine.
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candidates and academic journals including Bioorganic & Medicinal Chemistry

Letter, Journal of Medicinal Chemistry, Bioorganic & Medicinal Chemistry,

Journal of Natural Products, European Journal of Medicinal Chemistry,

MedChemComm, ACS Medicinal Chemistry Letters, etc. (Mendez et al., 2018).

Structures of compounds, assays, and activity information were manually extracted

from the literature by ChEMBL curators. Since information such as structure con-

nectivity, stereochemistry, and quantitative values are prone to error, it is encour-

aged to contribute to ChEMBL data by depositing chemical and biological

information during scientific publication (Mendez et al., 2018). The current released

version ChEMBL 28 (at the end of April 2021) contains over 2 million compounds

from over 80,000 publications and patents. It includes over 17 million activity data

annotating from over 1600 distinct cell lines, 500 tissues/organs, and 3600 organ-

isms (Table 18.1, Fig. 18.2) (Mendez et al., 2018). The number of targets in

ChEMBL has exceeded 14,300, with 6311 human proteins (Mendez et al., 2018).

Except for human, mouse, and rat targets, the database also contains plenty of

experimental data from other model organisms such as Staphylococcus aureus.

ChEBML is embracing new data sources from bacteria, viruses, and pathogens,

making it an ideal platform for multipurpose drug development (e.g., antimicrobial).

Clinical data in ChEMBL is continuing to be incorporated with other public data-

bases such as the ClinicalTrials.gov database (https://clinicaltrials.gov/), FDA Orange

Book (https://www.accessdata.fda.gov/scripts/cder/ob/), FDA New Drug Approvals

(https://www.fda.gov/Drugs/DevelopmentApprovalProcess/DrugInnovation/default.htm),

the British National Formulary (https://bnf.nice.org.uk/), Medicinal Subject Headings

(MeSH, https://www.nlm.nih.gov/mesh/). Bioactivity data are also timely exchanged

with external databases like PubChem (https://pubchem.ncbi.nlm.nih.gov/) and

BindingDB (http://www.bindingdb.org/). Other properties of deposited compounds

were calculated by RDKit (https://www.rdkit.org/). For data accessibility, ChEMBL

supports text search through its webpage and download from FTP site (ftp://ftp.ebi.

ac.uk/pub/databases/chembl/ChEMBLdb/latest/) with a variety of data formats includ-

ing SD file and FASTA file (Mendez et al., 2018).

18.2.1.4 ChemSpider

From the perspective of pure chemical structure and property, researchers hope to

obtain a variety of information about a compound, including molecular structure,

systematic nomenclature, physical properties, spectral data, reactions and synthetic

methods, and safety information. The information is typically distributed in differ-

ent literatures, libraries, and databases. ChemSpider (http://www.chemspider.com/)

was born to collectively integrate chemical structure-related information from

different data sources (Table 18.1, Fig. 18.2) (Pence and Williams, 2010). In 2009,

ChemSpider was purchased by the Royal Society of Chemistry (RSC), allowing the

accessibility of a wealth of information from RSC, that is, scientific publications

and databases. ChemSpider has also been connected with other databases such

as Wikipedia (https://en.jinzhao.wiki/wiki/Main_Page), PubChem, and Kyoto

Encyclopedia of Genes and Genomes (KEGG) (https://www.kegg.jp/). To avoid
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errors in the data input process, ChemSpider is curated by only registered users.

The data in ChemSpider can be accessed from text search, structure searches as

well as substructure search. With over 103 million chemical structures and links to

original data sources, ChemSpider is becoming a portal to the property, annotation,

synthesis, spectral information of the expanding chemical universe (Table 18.1)

(Pence and Williams, 2010).

18.2.2 Databases for targets

18.2.2.1 UniProt

The Universal Protein Resource (UniProt, https://www.uniprot.org/) is aimed to pro-

vide a comprehensive and high-quality data source of protein sequences and annota-

tions (Table 18.2) (Consortium, 2018). The behavior and physiology of cells are

defined by proteins that respond to environmental signals. Understanding the time-

dependent protein expression at a whole proteome level is crucial to interpret life in a

quantitative way. With the improvements of experimental techniques, the information

on protein sequence, structure and function is increasing broadly and deeply. It is

therefore challenging to manage the information and make it conveniently accessible

to users. UniProt data are managed by more than 100 experts hosted by the collabora-

tion of the European Bioinformatics Institute (EMBL-EBI), the Swiss Institute of

Bioinformatics (SIB), and the Protein Information Resource (PIR). UniProt (release

2020_05) now provides 564,638 reviewed entries for over 84 thousand species

including humans, rice, Arabidopsis thaliana, mouse, zebrafish, etc. UniProt entry is

composed of the core data field (protein sequence, protein name, description, taxon-

omy, citation) and peripheral field including as much annotation information

(Consortium, 2018). Although the database can provide rich information by simple

text query and search, it actively supports in-depth data mining through various

online training such as webinars (https://www.ebi.ac.uk/training/online/), YouTube

videos (https://www.youtube.com/user/uniprotvideos/), Facebook (https://www.face-

book.com/uniprot.org/), and Twitter (@uniprot).

18.2.2.2 Protein Data Bank

Structural biology has witnessed frequent advances in the structural determination

of proteins, RNA, DNA, and their complexes with small molecules. Since 1971, the

Protein Data Bank (PDB, https://www.rcsb.org/) established an open-access data-

base in structural biology by depositing only seven protein structures at the begin-

ning (Table 18.2) (Burley et al., 2018). With continuing development, PDB has

grown up to a comprehensive database consisting of 177,009 structural entities for

biological macromolecules (Fig. 18.2) (Burley et al., 2018). PDB data entry is origi-

nated from experimental sources including X-ray diffraction, nuclear magnetic

spectroscopy (NMR), and three-dimensional electron microscopy (Table 18.2).

Structural data are validated and biocurated by a global expert team to ensure the

accurate representation of the structural data and the underlying annotation
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information. Data exploration service in PDB allows convenient accessibility to

every structural entry via any popular web browser (e.g., Chrome, Firefox,

Microsoft Edge). The website rcsb.org supports the keywords and unstructured text

search, whilst the obtained data are sorted and tabulated to include atomic coordi-

nates, experimental methods, sequence, description, citation, specific chemical com-

ponents, taxonomy, and enzyme classification. Additionally, PDB data can be

explored by multiple online tools for data manipulation and visualization. For

example, the PDB website enables metabolic pathway mapping for user-interested

structures, drug, and ligand discovery through external links such as DrugBank and

BindingDB, as well as the fast and interactive three-dimensional display through

NGL Viewer (Burley et al., 2018).

18.2.2.3 String

With impressive advances in elucidating the interaction between individual pro-

teins, it is realized cellular machinery depends on the global network of physical

(direct) and functional (indirect) protein�protein interactions. The information

space of protein�protein interactions is far more complicated than the intrinsic

properties and annotations of individual proteins. STRING (https://string-db.org/) is

a knowledgebase of known and computationally predicted protein�protein interac-

tions (Szklarczyk et al., 2018). It collects and stores protein�protein interaction

data from a variety of publicly available data sources: genomic predictions, high-

throughput experiments, co-expression, automated text-mining, and online data-

bases such as Database of Interacting Proteins (DIP, http://dip.doe-mbi.ucla.edu/),

Biomolecular Interaction Network Database (BIND, http://bind.ca/), Molecular

Interaction Database (MINT, http://mint.bio.uniroma2.it/mint/), KEGG (http://

www.kegg.jp/), and Reactome (http://www.reactome.org/). STRING v11.0 contains

24,584,628 proteins and 3,123,056,667 total interactions from 5090 organisms

including Homo sapiens, Mus musculus, A. thaliana, and so on (Table 18.2,

Fig. 18.2) (Szklarczyk et al., 2018). STRING defines a functional association unit

as the basic building blocks, which is an edge between two proteins both having

functional contributions to a specific biological process. By the definition, pro-

tein�protein interaction does not necessarily require physical contact between pro-

teins. STRING website provides user-friendly access to the interaction network for

single protein and multiple proteins, which can be enquired either by name or

sequence. Also, through the STRING online server, users can compute functional

enrichment for a set of proteins involving the interaction network (Szklarczyk

et al., 2018).

18.2.2.4 BindingDB

BindingDB (https://www.bindingdb.org/) is an open database of experimental affin-

ity data of protein�ligand interaction (Gilson et al., 2015). With steady growth

since 2000, BindingDB now contains about 2.2 million protein�ligand affinity

data, involving 977,487 small molecules and 8516 protein targets (Table 18.2,
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Fig. 18.2) (Gilson et al., 2015). The data source for BindingDB includes scientific

publications and patents. Affinity data of at least one protein�ligand complex is

supplied in the database along with information on publication source and experi-

mental conditions (e.g., temperature, pH, buffer composition). BindingDB supports

interactive connection to several public databases including PDB, UniProt,

DrugBank, ChEMBL, PubChem, Reactome, MarinLit (http://pubs.rsc.org/marinlit),

and ZINC (http://zinc.docking.org/). Data in BindingDB is organized as hyperlinks

listed in a table format and can be accessed through flexible web tools for query,

browsing, download, visualization, and analysis (Gilson et al., 2015).

18.2.3 Databases for traditional Chinese medicine

TCM often comprises over thousands of chemical compounds from different botan-

ical species, hitting multiple biological targets (Cheung, 2011). The herbal com-

pounds and corresponding targets form a complex network that involves various

nodes and edges (Li et al., 2011; Tao et al., 2013). To comprehensively characterize

and analyze the network, the wet experiment is time-consuming and expensive due

to the dozens of chemical entities and biological targets involved. Systems pharma-

cology is a big data-driven strategy that deals with prior experimental data of herbal

compounds as well as biological assays (Li et al., 2011; Ru et al., 2014). With

increasing attention towards discovering novel lead compounds from TCM, a data-

base for TCM is necessary. Besides, the prediction power of systems pharmacology

is enhanced by online target prediction algorithms. This section briefly reviews

some typical TCM databases (Table 18.3).

18.2.3.1 Traditional Chinese medicine Database@Taiwan

TCM Database@Taiwan includes more than 20000 chemical compounds from 453

herbs, animals, and minerals in TCM (Chen, 2011). The database is evolving to

cover more compound data from folk herbs. In TCM Database@Taiwan, drug

molecules were classified into 22 different categories according to clinical applica-

tions (Chen, 2011). The classification model is based on the theories of TCM

involving the Yin-yang and the Five Elements theory. TCM ingredients were col-

lected from publications on Medline and ISI Web of Knowledge. Through simple

and advanced search, TCM Database@Taiwan provides both two-dimensional and

three-dimensional structures of each TCM constituent, as well as physical properties

such as ALogP, polar surface area, rotatable bonds, and so on (Table 18.3,

Fig. 18.2) (Chen, 2011).

18.2.3.2 Traditional Chinese medicine systems pharmacology

The TCM systems pharmacology (TCMSP) database and analysis platform is built

for this purpose (Ru et al., 2014). TCMSP contains 499 Chinese herbs collected in

Chinese Pharmacopeia (Ru et al., 2014). Through deep data mining and analysis,

29,384 chemical compounds, 3311 targets, and 837 associated diseases were
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manually curated in the database (Table 18.3, Fig. 18.2) (Ru et al., 2014).

ADME-related properties were computed in TCMSP, including oral bioavailability,

half-life, drug-likeness, Caco-2 permeability, blood�brain barrier, and Lipinski’s

rule of five (Ru et al., 2014). For drug targets, TCMSP includes all experimentally

validated targets and SysDT model predicted targets. The strengths of the TCMSP

platform allow the analytical decomposition of TCM through data and network

methodology (Ru et al., 2014).

18.2.3.3 Traditional Chinese medicine integrated database

TCM integrated database (TCMID) is aiming to provide convenient online informa-

tion on TCM for pharmacologists and scholars (Huang et al., 2017). Established in

2013, TCMID integrated online databases including TCM Database@Taiwan (Chen,

2011), HIT (Ye et al., 2010) to collect over 49,000 prescriptions, 8159 herbs, 25,210

ingredients, 3791 diseases, 6828 drugs and 17,521 targets (Table 18.3, Fig. 18.2).

Since most publications on TCM, especially separation and pharmacological research,

were written in Chinese, TCMID manually collects original data from the Chinese

national knowledge infrastructure (CNKI) and translated the related information into

English. Users can easily retrieve detailed descriptions and information from external

databases such as Drugbank, OMIM, and STITCH. Additionally, TCMID has docu-

mented mass spectra (Ms) of Chinese herbs through CNKI. TCMID collects the origi-

nal place of the herb, Ms spectrum, chromatography spectrum, as well as compound

information (Huang et al., 2017). With new features added, TCMID is growing as an

important hub for the modernization of TCM.

18.3 Prediction, construction, and analysis of
drug�target network

The drug�target network is mathematically described as a bipartite network graph

G(D, T, P). In the network, the drug set D and target set T is defined as

D5Dðd1; d2; . . . ; dnÞ

T 5 Tðt1; t2; . . . ; tmÞ

And the interaction set P is defined as a Kronecker matrix:

P5
p11 p12 . . . p1n

. . .
pm1 pm2 . . . pnm

2
4

3
5

where pkl5 1 when drug dk binds with target tl, otherwise pkl5 0. Practically, a binding

affinity threshold is used to obtain the interaction pkl. The purpose of the prediction,
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construction, and analysis of the drug�target network is to identify drug targets from

the whole target pool, formulate the interactome configuration, and characterize the

property and module both globally and locally. A landscape on the drug�target inter-

action network is crucial to the understanding of therapeutic mechanisms and side

effects. In this section, we briefly review advances in algorithms, computational tools,

and network analysis methods in drug�target interaction.

18.3.1 Algorithms to predict drug�target interaction network

Prediction of biological networks containing thousands of compounds and targets is

still challenging to the traditional experimental approach, such as high-throughput

screening and biological assays (Haggarty et al., 2003; Kuruvilla et al., 2002; Wang

et al., 2015; Whitebread et al., 2005). Therefore, the computational prediction

method is important for biological network analysis. Although the virtual screening

method for three-dimensional compounds and targets is well developed, the lack of

three-dimensional structural data and time-consuming algorithms for most biologi-

cal molecules still makes this approach limited in real application (Cheng et al.,

2007; Morris et al., 2009). Alternatively, several knowledge-based computational

methods have been developed to efficiently address the drug�target prediction

problem (Table 18.4). In this section, we will briefly review the typical algorithms

and methods for drug�target prediction.

Table 18.4 Algorithms to predict drug�target interaction.

Algorithms Classification Description Reference

Bipartite graph

algorithm

Supervised

machine

learning

A supervised machine learning

algorithm for a BG model,

mapping drugs in chemical

space and targets in genomic

space

Yamanishi

et al. (2008)

Advanced BG

algorithm

Supervised

machine

learning

Advanced version of BG

algorithm with pharmacological

data involved

Yamanishi

et al. (2010)

BLM Supervised

machine

learning

A BLM incorporating the

concepts of local models to

predict drug�target interaction

Bleakley and

Yamanishi

(2009)

BLM-NII Supervised

machine

learning

An updated version of BLM by

introducing neighbor-based

interaction-profile inferring

Mei et al.

(2013)

RBM Supervised

machine

learning

A RBM with a two-layer graphic

model effectively capture the

features of drug�target

interaction and predict different

types of drug�target interaction

Wang and

Zeng

(2013)

(Continued)
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Table 18.4 (Continued)

Algorithms Classification Description Reference

Random forest

algorithm

Supervised

machine

learning

Combines the information from

chemical, biological, and

network features to predict

drug�target interaction with

high accuracy

Cao et al.

(2014)

Negative

dataset

selection

method

Supervised

machine

learning

Two methods to assist the

selection of negative dataset in

the machine learning-based

algorithms

Wang et al.

(2014)

NetLapRLS Semisupervised

machine

learning

Adopts both labeled and unlabeled

data in machine learning

Xia et al.

(2010)

Chemical

similarity

Chemical

similarity

Chemical similarity method based

on the assumption that similar

drug structures are more likely

to interact with similar targets

Keiser et al.

(2009)

Two-step

similarity

Chemical

similarity

A similarity score was obtained by

graph representation and

chemical functional group

representation in two steps

Chen and

Zeng

(2013)

Phenotypic

side-effect

similarity

Network

similarity

An algorithm to determine if two

drugs will interact with the

same target

Campillos

et al. (2008)

NRWRH Network

similarity

Based on the framework of

random walk and the

assumption that similar drugs

often corresponding to similar

targets

Xia et al.

(2010)

DBSI Network

similarity

Drug-based similarity inference

based on complex network

theory

Cheng et al.

(2012)

TBSI Network

similarity

Target-based similarity inference

based on complex network

theory

Cheng et al.

(2012)

NBI Network

similarity

Network-based inference based on

complex network theory

Cheng et al.

(2012)

Within scores

and between

scores

Network

similarity

Considering features from target

similarity and drug similarity

Shi et al.

(2015)

MTOI Network

similarity

Multiple target optimal

intervention finding algorithm

to identify potential drug targets

and their optimal combinations

restoring to a normal state

Yang et al.

(2008)
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18.3.1.1 Machine learning-based methods

Yamanishi et al. have developed a bipartite graph (BG) algorithm to probe

drug�target interaction for four target classes including enzymes, ion channels,

GPCRs, and nuclear receptors (Table 18.4) (Yamanishi et al., 2008). By introducing

in-prior knowledge of chemical structures and genomic sequence information, they

have built a supervised machine learning algorithm for a BG model, mapping drugs

in chemical space and targets in genomic space (Fig. 18.3). The machine learning

models fc and fg were defined based on a modified kernel regression function:

f : X3X ! Rq

f x; xið Þ5
Xn
i51

s x; xið Þwi 1 E

Figure 18.3 An illustration of bipartite graph algorithm.
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where w represents a weighing vector, and s stands for similarity score for chemical

structures or sequence (Yamanishi et al., 2008). In this BG pharmacological space

algorithm, the structural and sequence similarity were considered, and the drug�
target interactions were predicted by the closeness between drugs and targets.

Regarding the side effect of a drug, it is assumed that drugs with similar side

effects are more likely to interact with similar targets. Taking pharmacological data

into consideration may further improve the performance of a machine learning-based

algorithm. Yamanishi et al. have further improved the BG method by involving phar-

macological knowledge (Yamanishi et al., 2010). The pharmacological effect similar-

ity, computed from the chemical structures of drugs, was introduced into the BG

model to identify drug�target interactions (Table 18.4) (Yamanishi et al., 2010).

Based on the BG method, Bleakley et al. proposed a bipartite local model

(BLM) incorporating the concepts of local models to predict drug�target interac-

tion (Table 18.4) (Bleakley and Yamanishi, 2009). By involving local models,

the edge-prediction problem was transformed into the binary classification of

labeled points (Bleakley and Yamanishi, 2009). Targets are predicted by comparing

sequence similarities, and drug�target interactions are predicted based on structural

similarities. Finally, independent drug�target interactions were obtained putatively.

Since it combines the strengths of the BG model and the local model, the BLM

algorithm showed an excellent computational performance to predict drug�target

interaction (Bleakley and Yamanishi, 2009).

Despite the computational speed, BLM is not able to predict drug�target interac-

tion without training data. Therefore, the prediction of drug�target interaction for

new drug molecules is not possible by using BLM. Mei et al. have proposed an

updated version of BLM by introducing neighbor-based interaction-profile inferring

(BLM-NII, Table 18.4) (Mei et al., 2013). The BLM-NII method derived the initial

weighted interactions for the new drug from its neighbor interaction profile and

then labeled this interaction to train the BLM model (Mei et al., 2013). For nuclear

receptors, BLM-NII enhances the BLM method, especially for the dataset that con-

tains drug�target with no prior interaction information.

Zeng et al. have developed a restricted Boltzmann machine (RBM) method that

can predict drug�target interactions and the types of interaction (Table 18.4)

(Wang and Zeng, 2013). In the RBM method, a contrastive divergence algorithm

was applied to a two-layer graphic model which represents drug�target interaction.

Zeng et al. has tested the RBM method on MATADOR and STITCH database

(Günther et al., 2008; Szklarczyk et al., 2015; Wang and Zeng, 2013). It has shown

the RBM method can effectively capture the features of drug�target interaction

and predict different types of drug�target interaction.

Cao et al. proposed a random forest algorithm to predict drug�target interaction

(Table 18.4) (Cao et al., 2014). The novelty of the algorithm was the combination

with the information from chemical, biological, and network features. The accuracy

of the algorithm was evaluated as 93.52%, 94.84%, 89.68%, and 84.72% for

enzymes, ion channels, GPCRs, and nuclear receptors, respectively (Cao et al.,

2014). The performance of the algorithm showed the importance of network topol-

ogy as training information for the prediction of drug�target interaction.
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In the prediction of drug�target interaction, a common problem for the machine

learning-based method is the lack of a negative dataset. Wang et al. have proposed

two methods to assist the selection of negative datasets in the machine learning-

based algorithms (Table 18.4) (Wang et al., 2014). In the first method, a drug�pro-

tein deviation function is defined as:

ξ Xið Þ5
X
j

xj
� �ðxij 2 xj

� �Þ
varðxjÞ

Pð xj
� �2

=varðxjÞÞ

�����
�����

vector Xi (i5 1,2,. . ., m) is an m-dimension vector representing m properties of the

ith target, x stands for the jth value for the property of the ith targets. Wang et al.

used ξ. 0.42 as a threshold value to select a negative dataset (Wang et al., 2014).

In the second method, a probability function for the ith unknown target to be a neg-

ative sample was defined as

P Xið Þ5 ðξ Xið Þ2 ξpositive
� �Þ2P ðξ Xið Þ2 ξpositive
� �Þ2

P5 0.5 was used to consider the negative dataset. Wang et al. have improved

the prediction accuracy and identified 1797 and 227 drug�target interactions by

using these two methods, respectively (Wang et al., 2014).

As discussed above, labeling the positive or negative dataset is often a challeng-

ing problem in the development of algorithms based on supervised machine learn-

ing methods. The problem can be addressed by introducing a semisupervised

method, which adopts both labeled and unlabeled data in machine learning. Wong

et al. developed a manifold regularization semisupervised machine learning method

(Table 18.4) (NetLapRLS) to predict drug�target interaction, which generates a

biological space by combining information of chemical space, sequence space, and

drug�target interaction network (Xia et al., 2010). In the drug domain, classifica-

tion functions are defined as:

F�
d 5 min

Fd

JðFdÞ5Y2Fd
2
f 1βdTraceðFT

dLdFd

�

F�
d 5Wdα�

d

α�
d 5 arg min

αdARnd 3 np
Y2Wdαd

2
f 1 βdTraceðαT

dWdLdWdαdÞ
n o

where Fd is the prediction function on drug domain, αd is a cost function, and

is Frobenius norm, βd is the trade-off in the drug domain, Trace is the matrix trace,

Y is the adjacent matrix of the known drug�target interaction network (Xia et al.,

2010). The similar function Ft was defined in the target domain. Applying repre-

senter theorem and optimization, the prediction function in drug and protein domain
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were derived as:

F�
d 5WdðWd1βdLdWdÞ21Y

F�
t 5WtðWt1βtLtWtÞ21Y

The predictions are then obtained by combining drug and target domain as (Xia

et al., 2010)

F� 5
F�
d 1 ðF�

t ÞT
2

18.3.1.2 Similarity-based methods

Side effects and efficacy of a drug could be explained by the multiple physiological

targets of a drug. It is reasonable to assume that similar drug structures are more

likely to interact with similar targets. But one should keep in mind that molecular

similarity should be well defined first, since the concept of similarity is subjective

and the similarity space is complex (Basak et al., 2002; Basak et al., 2006). By using

two-dimensional chemical similarity method, Keiser et al. predicted thousands

of drug�target interactions (Table 18.4) (Keiser et al., 2009). Among them, 23 asso-

ciations were experimentally confirmed, including the inhibition of the 5-

hydroxytryptamine transporter by the ion channel drug Vadilex, and antagonism of

the histamine H4 receptor by the enzyme inhibitor Rescriptor (Keiser et al., 2009).

Chen et al. have developed a two-step similarity-based method to predict the target

group of drugs (Table 18.4) (Chen and Zeng, 2013). In this method, drugs were

encoded as their graph representations. Then the target group T(d) for drug d was

defined as a vector containing five elements, which are Boolean values representing

whether a drug target belongs to the five target groups, that is, G-protein-coupled

receptors (GPCRs), cytokine receptors, nuclear receptors, ion channels and enzymes

(Chen and Zeng, 2013). A similarity score was obtained by graph representation and

chemical functional group representation in two steps, respectively. The method pro-

vided more than one target group for each drug, and the prediction accuracy was

79.01% and 76.43% for the training and test set, respectively (Chen and Zeng, 2013).

Using phenotypic side-effect similarity, which describes the similarity of in vitro

target binding profiles of drugs, Kuhn et al. proposed an algorithm to determine if

two drugs will interact with the same target (Table 18.4) (Campillos et al., 2008).

Two-dimensional Tanimoto similarity coefficient of a chemical structure and a lin-

ear function PSE describing the probability of sharing the same considering the

side-effect similarity were used in the algorithm. Combining these functions, Kuhn

et al. defined a sigmoid function P2D to characterize the probability of sharing the

same target from chemical structures (Campillos et al., 2008):

P2D 5 11e
B2y
A

� �21
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where A and B are function parameters. Kuhn et al. used the method to analyze 746

approved drugs, and build a side-effect network with 1018 drug�drug relations,

which contains 261 with no chemical similarity (Campillos et al., 2008).

Based on the framework of random walk and the assumption that similar drugs

often correspond to similar targets, Yan et al. have developed a network-based ran-

dom walk with restart on the heterogeneous network (NRWRH) algorithm to pre-

dict drug�target interaction (Table 18.4) (Xia et al., 2010). Different from machine

learning approaches, the NRWRH algorithm utilized network analysis techniques

by introducing random walk on the heterogeneous network. With information on

known drug�target interactions, Yan et al. have integrated three different networks

into a heterogeneous network, including target�target similarity network, drug�
drug similarity network, and drug�target interaction network (Xia et al., 2010). To

implement a random walk, a transition matrix M was calculated as:

M5
MTT MTD

MDT MTT

� 


where MTT and MDD are the probability for target-to-target and drug-to-drug transi-

tion in the random walk, respectively; MTD and MDT are the transition probability

for target-to-drug and drug-to-target, respectively (Xia et al., 2010). Then the ran-

dom walk was implemented by the following iteration equation:

pt11 5 12 rð ÞMTpt 1 rp0

where the probability p is iteratively calculated with the restart probability r and

transition matrix M. Yan et al. has shown that NRWRH has improved prediction

performance in four classes of drug�target interactions, that is, enzymes, ion chan-

nels, GPCRs, and nuclear receptors (Xia et al., 2010).

Based on complex network theory, Tang et al. proposed three supervised infer-

ence methods to predict drug�target interaction (Table 18.4), namely drug-based

similarity inference (DBSI), target-based similarity inference (TBSI), and network-

based inference (NBI) (Cheng et al., 2012). For the three inference methods, differ-

ent similarity score functions were defined based on chemical structure similarity,

sequence similarity, or network similarity. For example, the final score f(i) of drug

di in the NBI method is obtained from:

f ið Þ5
Xm
l51

ail

kðtlÞ
Xn
o51

aolfoðoÞ
kðdoÞ

where k(do) represents the number of targets interacting with drug do, and k(tl)

denotes the number of drugs interacting with target tl. NBI method showed the best

performance despite it neglects chemical structure similarity (Cheng et al., 2012).

Shi et al. introduced the drug target pair as a vector of within-scores and

between-scores, which utilizes features from target similarity and drug similarity
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(Table 18.4) (Shi et al., 2015). By doing this, Shi et al. has created a global classi-

fier and a uniform vector of all different types of drug�target pair (Shi et al.,

2015). Besides, the unknown drug�target pair can be analyzed in the same visuali-

zation space.

Tang et al. have developed a multiple target optimal intervention (MTOI) find-

ing algorithm which aims to identify potential drug targets and their optimal combi-

nations restoring to a normal state (Table 18.4) (Yang et al., 2008). To implement

the algorithm, ODEs and parameters for the network were obtained from the

Michaelis�Menten equation and experimental data. Monte Carlo simulation was

performed to achieve the desired state by optimizing an objective function Fobj

(Yang et al., 2008). Tang et al. applied the MTOI method to understand the side-

effects of traditional nonsteroidal antiinflammatory drugs in an inflammation-

related network (Yang et al., 2008).

18.3.2 Tools for network construction

18.3.2.1 Cytoscape

Modeling complex biological network from a set of experimental data is crucial to

understand various layers in systems biology, including biochemical reactions, gene

transcription kinetics, cellular physiology, and metabolic control. Researchers have

developed different computer-aided software to facilitate the management and visu-

alization of big data from lab experiments and mathematical predictions. Cytoscape

is an important tool to build a unified biological framework from high-throughput

expression data and bio-molecular states (Table 18.5) (Shannon et al., 2003). The

network graph is the core concept in Cytoscape, which represents molecular species

and their interactions as nodes and edges, respectively. The basic functionality of

Cytoscape generates a graph representation of imported biological data. By defining

attributes, nodes are paired according to their names and values. Hierarchical

Table 18.5 Computational tools for network construction.

Tools Description Website Reference

Cytoscape Build biological framework from high-

throughput expression data and bio-

molecular states

https://go.drugbank.

com/

Shannon

et al.

(2003)

Pajek Efficiently analyze large network

structures by storing sparse

networks

https://pubchem.

ncbi.nlm.nih.gov/

Batagelj et al.

(2003)

Gephi Utilizes 3D graphics engine to explore

and manipulate large networks

in-time

https://www.ebi.ac.

uk/chembl/

Bastian et al.

(2009)

NetworkX Python package aiming to create,

explore and analyze network

structures

http://stitch.embl.

de/

Hagberg

et al.

(2008)
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classification is allowed by using graph annotation. Users can customize graph lay-

out, attribute-to-visual mapping, and complete graph selection and graph-filtering

with plugin functions (Shannon et al., 2003). With the help of external databases of

drug�protein interaction, protein�protein interaction, protein-nucleic acid interac-

tion, and genetic interaction, Cytoscape is powerful in modeling, analyzing, and

visualizing biological networks for humans and other organisms.

18.3.2.2 Pajek

Pajek is a program to analyze large network structures efficiently (Table 18.5)

(Batagelj et al., 2003). Networks in biological systems are usually large, and con-

tains thousands of nodes and edges. The common network analysis tool is mathe-

matically based on a matrix, which is inefficient when dealing with large graphs.

Since modern computers have enough memory for storing sparse networks, Pajek

proposed an alternative approach to efficiently analyze large graphs by compensat-

ing for space complexity (Batagelj et al., 2003). Data structures in Pajek are imple-

mented as six layers, namely network, permutation, vector, cluster, partition, and

hierarchy. Also, different transition methods were defined to allow data structure

transformation. Theoretically, most of the algorithms in Pajek have subquadratic

time complexities (Batagelj et al., 2003).

18.3.2.3 Gephi

To obtain high-quality visualization and data processing experience, a network

exploration tool should develop to incorporate high flexible and scalable interactive

functions. Gephi is a freely available program that uses a three-dimensional gra-

phics engine to explore and manipulate large networks in time (Table 18.5)

(Bastian et al., 2009). The three-dimensional rendering technique is based on a

computer graphic card. Due to its multitask nature, Gephi can deal with large

graphs with over 2000 nodes (Bastian et al., 2009). Gephi loaded network data into

the workspace where each network can be managed separately. And, the function

can be extended with external plugin programming. The manipulated networks can

be exported as SVG or PDF files.

18.3.2.4 NetworkX

NetworkX is a Python package aiming to create, explore and analyze network struc-

tures (Table 18.5) (Hagberg et al., 2008). NetworkX can deal with arbitrary graph

objects including simple graphs, directed graphs, graphs with self-loops, and paral-

lel edges based on its basic data structure. The standard data structure in NetworkX

contains edge lists, adjacency matrices, and adjacency lists (Hagberg et al., 2008).

Since the computation storage and speed depends on the choice of data structure,

NetworkX uses adjacent lists for real-world networks with sparse nature. Search

and update algorithms for adjacent lists can be achieved through dictionary data

structure in Python (Hagberg et al., 2008). Once a graph object is created in

NetworkX, users can analyze the network through standard algorithms, such as
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degree distribution, clustering coefficient, shortest path computing, and spectral

measures. NetworkX allows graph visualization through its hooks into Matplotlib.

In application, NetworkX has been used to perform spectral analysis of network

dynamics and to investigate the synchronization of oscillators. The installation of

NetworkX is easy, which requires NumPy, SciPy and Matplotlib installed in prior

(Hagberg et al., 2008).

18.3.3 Network topological analysis

18.3.3.1 Degree distribution

The degree of a node is the number of edges linking to the node. It has shown in

many biological networks are scale-free, which means the degree distribution of a

network follows a power-law k2λ, where λ is the degree exponent. In a scale-free

network, the distribution of degrees is not evenly distributed. Cohen et al. showed a

scale-free network is very robust to random attacks (Cohen et al., 2000). Therefore,

the proteins with a high degree, also named hubs, evolve slowly and are crucial for

the cell’s survival (Cheng et al., 2014; Eisenberg and Levanon, 2003; Hahn and

Kern, 2004; He and Zhang, 2006; Jeong et al., 2001).

18.3.3.2 Path and distance

The shortest path for a pair of nodes is defined as the shortest length linking the

two nodes out of all possible path lengths. Analysis of the shortest path is important

to investigate regulatory pathways in protein�protein interaction networks through

direction assignment (Blokh et al., 2013; Silverbush and Sharan, 2014). By using

the concept of path and distance, it is possible to evaluate the proximity in the

drug�target network. Guney et al. have proposed different distance measurement

methods (including the closest, shortest, kernel, center, and separation distances) to

analyze the therapeutic effect of drugs (Guney et al., 2016). They have investigated

238 drugs used in 78 diseases and found that the therapeutic effect is localized in

the neighborhood of a small network (Guney et al., 2016). Guney et al. have shown

the network-based distance analysis are useful in drug repurposing and adverse

effect detection (Guney et al., 2016).

Another important measure based on the shortest path is efficiency, which is

defined as

E Gð Þ5 1

NðN2 1Þ
X
i 6¼jAG

1

dij

where N is the number of nodes, and dij is the shortest path for nodes i and j

(Latora and Marchiori, 2001). Efficiency measures the traffic capacity of a network

and how efficiently it exchanges information (Latora and Marchiori, 2001).

Csermely et al. found it is possible to efficiently inhibit targets through a small

number of inhibitors instead of a complete inhibition of a single target (Csermely
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et al., 2005). In addition, the concept of network efficiency rationalizes multitarget

strategy in drug design, which is useful in the development of drug combinations

(Cheng et al., 2019; Csermely et al., 2005; Vazquez, 2009).

Based on the network shortest path, it is possible to measure the importance of a

node, which is characterized through betweenness in the following equation:

B vð Þ5
X
i 6¼j

δijðvÞ
δij

where δij is the number of the shortest paths from i to j, δij(v) is the number of the

shortest paths that travel through node v. It should be noted the degree and

betweenness of a node is not correlated, which means nodes with a small degree

could have large betweenness (Guimerà et al., 2005; Joy et al., 2005; Yu et al.,

2007). As mentioned, the betweenness characterizes the importance of a node. A

node with high betweenness is known as a bottleneck in a network. Bottlenecks

control the flow of information in a network and improve network efficiency. It has

shown that proteins with high betweenness are essential and tend to be highly pleio-

tropic (Ahmed et al., 2018; Estrada and Ross, 2018; Zou et al., 2008).

18.3.3.3 Module and motifs

In complex networks, a dense subgraph or subnetwork is referred to as a module.

The modularity of a network is defined as (Clauset et al., 2004; Newman and

Girvan, 2004; Newman, 2012):

M5
1

2E

X
½Aij 2Pij�δCi ;Cj

where E is the number of network edges, A is an adjacent matrix, P is the expected

number of edges from node i to j, δij is a Kronecker function which equals 1 only if

node i and j belongs to the same community. A number of methods have been

developed to identify modules and communities in a network (Ahn et al., 2010;

Palla et al., 2005; Palla et al., 2007; Rosvall and Bergstrom, 2007; Rosvall and

Bergstrom, 2008). Module analysis provided an effective approach to investigating

complex networks by identifying specific modules instead of unfolding the entire

network. Increasing results showed that modules are important in uncovering new

drug targets and promoting drug development (Derry et al., 2012).

Motifs in a network are defined as connection patterns with a high occurring

number in a network than in randomized networks (Alon, 2007; Milo et al., 2002;

Shen-Orr et al., 2002). Universal classes of networks can be defined through motifs.

Some of the basic motifs, including 13 3-node directed motifs and 30 undirected

motifs (also named graphlets) with node numbers ranging from 2 to 5, are shown in

Fig. 18.4 (Milo et al., 2002; Pržulj, 2007). Analysis of network motifs is useful to

identify druggable targets. Tan et al. used network motifs analysis to uncover basic

principles of cellular target druggability, which describes the capacity of a target
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modulated by a drug (Wu et al., 2016). They found that highly druggable motifs

share a consensus topology of a negative feedback loop without any positive feed-

back loops (Wu et al., 2016). On the opposite, the motifs of low druggability con-

sist of multiple positive direct regulations and positive feedback loops. In addition,

Tan et al. showed druggability can be reduced by adding direct regulations to a

drug�target network (Wu et al., 2016).

18.4 Conclusion and perspectives

The paradigm has shifted from one-bullet-one-target to a network view in drug dis-

covery and development. As demonstrated by Yildirim et al., the complex network

nature of drug�target interaction imposes a holistic philosophy in drug discovery and

drug repurposing in the next decades (Yildirim et al., 2007). As high-throughput

experimental data is expanding rapidly and dramatically, novel databases and data

management methodologies are emerging, especially when considering chemicals

derived from complicated herbal plants and their related targets. A uniform data

Figure 18.4 An illustration of (A) 13 3-node directed motifs and (B) 30 graphlets with node

numbers ranging from 2 to 5.
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format or data transformation platform will facilitate data utilization more efficiently,

which is also fundamental to the construction, prediction, and analysis of drug�target

interaction networks.

Various computational algorithms have been proposed for drug�target interaction

prediction and analysis. Through the framework of network science, it is possible

to reconstruct drug�target interaction networks without concerning the three-

dimensional structures of drugs and targets. These methods showed high performance

in accuracy and speed, which are important in real applications including target pre-

diction and mechanism elucidation. However, these methods still need to be further

completed, including drug�target interaction prediction method without a prior

knowledge of ligand, as well as the development of quantitative methods for the anal-

ysis of drug�target interaction. Nevertheless, the coupling of big data and network

science in drug�target interaction has opened a new era in drug discovery and

development.
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Palla, G., Derényi, I., Farkas, I., Vicsek, T., 2005. Uncovering the overlapping community

structure of complex networks in nature and society. Nature 435, 814�818.

Palla, G., Barabási, A.-L., Vicsek, T., 2007. Quantifying social group evolution. Nature 446,

664�667.

Parkhe, A., Wasserman, S., Ralston, D.A., 2006. New frontiers in network theory develop-

ment. Acad. Manage. Rev. 31, 560�568.

Pence, H.E., Williams, A., 2010. Chemspider: an online chemical information resource.

J. Chem. Edu. 87, 1123�1124.
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